
_Oi.j!t' i7:,' /_l

Abstract of a Proposed Paper to be Presented at the AIAA 39 tn

Aerospace Sciences Meeting, January 8-11, 2001 in Reno, Nevada

A RAPID AERODYNAMIC DESIGN PROCEDURE BASED ON

ARTIFICIAL NEURAL NETWORKS

Man Mohan Rai"

NASA Ames Research Center

Moffett Field, CA-94035

ABSTRACT

An aerodynamic design procedure that uses neural networks to

model the functional behavior of the objective function in design

space has been developed. This method incorporates several

improvements to an earlier method that employed a strategy called

parameter-based partitioning of the design space in order to reduce

the computational costs associated with design optimization. As with

the earlier method, the current method uses a sequence of response

surfaces to traverse the design space in search of the optimal

solution. The new method yields significant reductions i n

computational costs by using composite response surfaces with

better generalization capabilities and by exploiting synergies

between the optimization method and the simulation codes used to

generate the training data. These reductions in design optimization

costs are demonstrated for a turbine airfoil design study where a

generic shape is evolved into an optimal airfoil.

INTRODUCTION

Artificial neural networks have been widely used i n

aeronautical engineering. Recent aerodynamic applications include,

for example, flow control, estimation of aerodynamic coefficients,

compact functional representations of aerodynamic data for rapid

interpolation, grid generation, aerodynamic design and reduction of

wind tunnel test times by using neural nets to interpolate between

measurements (Refs. 1-9). Neural network applications i n
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aeronautics are not limited to aerodynamics. Hajela and Berke (Ref.

I0) provide a review of a variety of neural network applications in

structural analysis and design.

A new approach to aerodynamic design optimization that is

based on neural networks is presented in Refs. 11 & 12. This method

offers several advantages over traditional optimization procedures.

First, neural networks are particularly suitable for multidimensional

interpolation of data that lack structure. They can provide a greater

level of flexibility than other methods in dealing with design in the

context of unsteady flows, partial and complete data sets, combined

experimental and numerical data, inclusion of various constraints

and rules of thumb, and other issues that characterize the

aerodynamic design process. Second, neural networks provide a

natural framework within which a succession of numerical solutions

of increasing fidelity incorporating more and more of the relevant

flow physics can be represented and utilized subsequently for

optimization. Third, and perhaps most important, neural networks

offer an excellent framework for multidisciplinary design

optimization. Simulation tools from various disciplines can be

integrated within this framework. Rapid trade-off studies across one

or many disciplines can also be performed.

Another attractive feature of this neural network-based design

system (ref. 12) is that it can make efficient use of distributed and

parallel computing resources. The method lends itself to multi-tiered

parallelism. At the coarsest level, multiple CFD simulations can be

performed simultaneously and independently on multiple processors.

In situations where individual simulations are computationally

intensive, each simulation can also be partitioned across multiple

processors. In addition, neural network training can be distributed

over multiple processors to further accelerate the design process.

The design method of Ref. 12 incorporates the advantages of

both traditional response surface methodology (RSM) and neural

networks by employing a strategy called parameter-based

partitioning of the design space. Starting from the reference design, a

sequence of response surfaces based on both neural networks and

polynomial fits are constructed to traverse the design space in search

of an optimal solution. The procedure combines the power of neural

networks and the economy of low-order polynomials (in terms of

number of simulations required and network training requirements).
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This method was used in Ref. 12 to reconstruct the shape of a
turbine airfoil given the pressure distribution and some relevant
flow and geometry parameters. The shape of the airfoil was not
known a priori. Instead, it was evolved from a simple curved section
of nearly uniform thickness. The evolved optimal airfoil closely
matched the shape of the original airfoil that was used to obtain the
pressure distribution. This constituted a "blind" test of the design
methodology.

This method was also used in Ref. 13 to redesign a generic gas

generator turbine to improve its unsteady aerodynamic performance.

Although the turbine was originally designed to operate in the high-

subsonic regime, an unsteady analysis showed very strong

interaction effects including an unsteady shock in the axial gap

region between the stator and rotor rows. The method yielded a

modified design that was very close to the reference design and

achieved the same work output with better unsteady aerodynamic

performance by eliminating the unsteady shock.

The method of Ref. 12 was used again in Ref. 14 to enhance the

unsteady aerodynamic characteristics of a transonic turbine stage.

Design optimization resulted in a weakened stator trailing edge shock

which in turn resulted in significant reductions in the dynamic loads

on the stator and rotor airfoils and also eliminated unsteady

boundary layer separation on the rotor suction surface. These

improvements in aerodynamic characteristics were obtained without

a reduction in turbine work output. The results presented in Refs. 1 3

and 14 add to the successful application of the neural net-based

design method to design in a steady flow environment and

demonstrate the versatility of the method.

The evolution of a turbine airfoil from a simple curved section

of nearly uniform thickness that is described in Ref. 12 required

about 40 CPU hours on a single processor of a CRAY-C90 to generate

the training data (CF'D simulations) and to train the neural networks.

Clearly, a reduction in the amount of CPU time required for design

optimization would increase the usability of the method in fully

three-dimensional design optimization. Improvements to the

method of Ref. 12, that significantly accelerate the optimization

process, will be presented in this paper. This new method has

reduced the total CPU requirements for the turbine airfoil evolution

study from 40 hours to 24 minutes (a reduction of two orders of



magnitude). The results are presented in this abstract. Details of the
design procedure will be included in the final paper.

EARLIER DESIGN METHOD

The design method of Ref. 12 uses a sequence of response
surfaces based on both neural networks and polynomi'al fits to

traverse the design space in search of the optimal solution. A

technique called parameter-based partitioning of the design space is

used, where the functional dependence of the variables of interest

(e.g., pressure) with respect to some of the design parameters is

represented using neural networks and the functional dependence

with respect to the remaining parameters is represented using

polynomials. The power of neural networks and the economy of low-

order polynomials (in terms of the number of simulations required

and network training requirements) are thus effectively combined.

The method can be viewed as a variant of Response Surface

Methodology (Ref. 15 & 16) where the response surfaces are

constructed using both neural networks and polynomials. Traditional

RSM uses only low-order polynomials in constructing the response

surfaces.

The method of Ref. 12 uses polynomial approximations on

multidimensional simplexes. An s-dimensional simplex is a spatial

configuration of s dimensions determined by s+l equispaced vertices

that lie on a hypersphere of unit radius. By this definition a two-

dimensional simplex is an equilateral triangle that is circumscribed

by a unit circle. This approach assumes that the local variation of

the design objective function can be accurately represented using

low-order polynomials, which is the often the case. The polynomial

fit on this simplex together with the trained neural network

represents a composite response surface. The optimization procedure

then uses a sequence of such composite response surfaces to traverse

the design space in search of the optimal solution.

Parameter-based partitioning of the design space is

accomplished in the following manner. Assume that the flow variable

being modeled in order to compute the objective function is the

surface pressure on an airfoil. Since the variation of the pressure

along the airfoil surface is typically far more complicated than the

variation with small changes in geometric parameter values, a neural

network is used only to represent pressure variation in physical
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space. The three-layer neural network (with two-hidden layers)
shown in Fig. 1 is used for this purpose. The first node in the input
layer is a bias node (input of 1.0). The second set of nodes is used to
specify the physical location. Figure 3 shows a third set of input
nodes that may be used in cases where the functional behavior of the
pressure with some of the geometric parameters is "complex" and
one wishes to use the neural network to represent this behavior.

The variation of the surface pressure with geometry
parameters is approximated using polynomials. If a linear variation
is assumed, the points at which the pressure data are determined are
located at the vertices of a simplex of dimension equal to the number
of geometry parameters.

The optimization strategy of Ref. 12 to evolve an optimal turbine
airfoil starting from the initial design can be summarized as follows:

1. Populate the design space in the vicinity, of the initial design. The

initial design serves as the centroid of the first simplex in the

optimization process. A simplex in design space is constructed

around this centroid and computational fluid dynamics (CFD)

analyses at each of the vertices are obtained.

2. Train the neural networks and compute the polynomial

coefficients to define the composite response surface. The input

nodes of the neural nets will typically contain parameters that

correspond to the physical location on the airfoil and those

geometric parameters that give rise to "complex" variations of the

surface pressure. The neural nets are trained and the polynomial

coefficients that define the pressure variation within the simplex

are computed. The trained neural networks in combination with

the polynomial fit then constitute the composite response surface.

3. Search the region of the design space represented by the

composite response surface. A conjugate gradient method was

used in this study to perform this constrained search. Geometrical

and other constraints can be easily incorporated within this

search procedure. In addition, constraints that limit the search

procedure to the volume of the simplex are also incorporated in
the search.

4. Relocate the simplex. If the local optimum obtained in the

previous step lies on the boundaries of the simplex then this



point is chosen as the new centroid and steps 1-4 are repeated
until the search culminates inside the simplex. However, the
process can be stopped at any time when the design is deemed
adequate.

5. Validate the design. As a final step in the process the

aerodynamic analysis is carried out for the _ geometry

corresponding to the optimal design to determine the adequacy

and quality of the design.

Additional details of the design procedure can be found in Ref. 12.

CURRENT DESIGN METHOD

The results presented in Refs. 12-14 demonstrate both the

ability of the method in solving some complex aerodynamic design

optimization problems as well as its versatility in being able to

handle different objective functions and constraints. However, the

applicability of this approach to even more complex optimization

problems such as the design of three-dimensional aerodynamic

surfaces in the context of steady and unsteady flows, designing for

multiple operating conditions and multidisciplinary optimization

requires considerable reductions in both the number of optimization

steps required to obtain the optimal shape and the CPUrequirements

for generating the training data.

Reductions in costs can be achieved in the following ways:

1. Developing composite response surfaces with improved

generalization capabilities (in this case, composite response

surfaces that are accurate both inside and outside the given

simplex).

2. Exploitation of synergies between the optimization method and
the simulation codes such that the simulations can be obtained

much more rapidly.

Ideally one would also like to formulate the method so that it is easy

to use whether one is trying minimize a scalar valued function or a

vector valued function (as in inverse design or multiple point

design).
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The final paper will discuss the progress made in

these areas that has resulted in a substantially different

composite response surface methodology (improvements to

the method of Ref. 12).

AIRFOIL GEOMETRY PARAMETERIZATION ,

Geometry parameterization and prudent selection of design

variables are among the most critical aspects of any shape

optimization procedure. Since this study focuses on airfoil design, the

ability to represent various airfoil geometries with a common set of

geometrical parameters is essential. Variations of the airfoil

geometry can be obtained by varying these parameters. Geometrical

constraints imposed for various reasons, such as structural,

aerodynamic (e.g., to eliminate flow separation), etc., should be

included in this parametric representation as much as possible.

Additionally, the smallest number of parameters should be used to

represent the family of airfoils.

The method used here for parameterization of the airfoil

geometries is described in Ref. 12 and is reviewed here for

completeness. Figure 2 illustrates the method for a generic airfoil.
Some salient features of the method are noted below:

1. The leading edge is constructed using two different ellipses, one

for the upper surface and one for the lower surface. The

eccentricity of the upper ellipse and the semi-minor axes of both

ellipses are specified as geometric parameters (e u, tu, and tl),

respectively. All other related parameters can be determined

analytically. The major axes of both ellipses are aligned with the

tangent to the camber line at the leading edge. This tangent is

initially aligned with the inlet flow but is allowed to rotate as the

design proceeds. The angles Ctu and _1 determine the extent of the

region in which the leading edge is determined by these ellipses.

The two ellipses meet in a slope continuous manner.

2. The trailing edge can also be constructed in a similar manner with

the major axes of the ellipses aligned with the tangent to the

camber line at the trailing edge. However, in this study the

trailing edge was defined using a single circle. The angles ]_u
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and [31determine the extent of the region in which the trailing

edge is represented by this circle.

3. The region of the upper surface between the upper leading edge
ellipse and the trailing edge circle is defined using a tension
spline. This tension spline meets the leading edge ellipse and the
trailing edge circle in a slope continuous manner. .Additional
control points for the tension spline are introddced as necessary.
These points provide better control over the shape of the upper

surface. The lower surface of the airfoil between the lower leading

edge ellipse and the trailing edge circle is obtained in a similar

manner.

As in Ref. 12, a total of 13 geometric parameters were used to

define the turbine stator airfoil in the current study. These

parameters are listed below:

1. Leading edge and trailing edge airfoil metal angles (2 parameters).

2. Eccentricity of upper leading edge ellipse (1 parameter).

3. Angles defining

parameters).

the extent of the leading edge ellipses (2

4. Semi-minor axes values at the leading edge (2 parameters).

5. Angles defiLaing

parameters).

the extent of the trailing edge circle (2

6. Airfoil stagger angle (1 parameter).

7. Airfoil y-coordinate values at about 50% chord on the upper and

lower surfaces (2 parameters).

8. Airfoil y-coordinate value at about 75% chord on the upper

surface (1 parameter).

This method of generating the airfoil surface provided a smooth

shape transition from a curved constant thickness section to the

optimal airfoil. The intermediate airfoil shapes required by the

optimization procedure were obtained by smoothly varying some or

all of these 13 parameters.

8



RESULTS

The current neural-net based design method is used here to

evolve a turbine airfoil from a simple curved section of nearly
:L

uniform thickness. This is the same airfoil that w.as used in Ref. 1 2

and thus allows a direct comparison of results and design method

efficacy. The target pressure distribution was supplied by Pratt &

Whitney (P&W) (Private Communication, F. Huber, 1997). This

pressure distribution was obtained at the midspan of a turbine vane

from a modern jet engine. In addition to the target pressure

distribution, the inlet total pressure and temperature, inlet and exit

gas angles, the exit Mach number, the axial chord, the trailing edge

circle radius, the radius of the midspan section and the number of

vanes in the row were also provided by P&W.

The computational method used to compute the flow in the

stator row is a third-order-accurate, iterative-implicit, upwind-

biased scheme that solves the time-dependent Euler and Reynolds-

averaged, thin-layer, Navier-Stokes equations. The region of interest

is discretized using multiple grids; an inner "O"grid that contains the

airfoil and an outer "IT' grid that conforms to the external

boundaries. A typical turbine stator airfoil and a representative

computational grid are shown in Fig. 3. Details regarding the CH)

solution methodology can be found in Ref. 17.

Evolution of a generic shape into an optimal airfoil

The current methodology uses a sequence of composite

response surfaces to enable a search of the design space thus

permitting the use of initial designs that are far from the optimal

design. To illustrate this capability the initial geometry was chosen to

be a nearly constant thickness curved section. The inlet and exit

metal angles for this curved plate were initially set equal to the

corresponding gas angles. This initial geometry is shown in Fig. 4 by
the airfoil marked A.

The composite response surface was used to represent the

functional dependence of the airfoil surface pressure on the airfoil
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axial location as well as the geometric parameters. The sum of the

squared error or objective function to be minimized was then
defined as

imax

9

SSE -- E (Pi-Pi)-

i=l

where Pi is the target pressure, Pi is the pressure at the same axial

location for the airfoils generated during the optimization process,

and imax is the total number of airfoil surface points at which the

target pressure is defined.

The current design methodology was then applied to obtain the

optimal geometry. Figure 4 shows the progression of the airfoil

geometry as the optimal design is approached. Figure 5 compares the

corresponding pressure distributions with the target pressure

distribution (the surface pressure and the axial location on the airfoil

are normalized using the inlet total pressure and the airfoil axial

chord, respectively). An additional feature that was incorporated into

the design process was the use of CFE)solutions of different fidelities.

The design process was carried out using solutions to the Euler

equations until the geometry denoted C in Fig. 4 was obtained.

Subsequently, solutions to the Reynolds-averaged Navier-Stokes

equations were used to achieve the final design shown as airfoil Din

Figure 4. A similar technique was also used in Ref. 12 to reduce

design costs.

Design optimization was performed with only 6 variables (t u, t l,

°_u, °_l, _u and _l) until the airfoil marked C was obtained. Thereafter

all 13 of the variables mentioned before were used to represent the

airfoil surface. A similar technique was also used in Ref. 12 to reduce

design costs. Figures 4 and 5 show a smooth transition of the curved

section to the optimal airfoil geometry. An excellent agreement

between the target pressure distribution and the computed pressure

distribution (corresponding to airfoil D) is obtained at the end of the

optimization process. Airfoils B, C and D were obtained after 2, 4 and

6 optimization steps, respectively.
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Figure 6 shows the variation of the mean square error as a
function of the cumulative computing time (on a single processor
CRAY-C90) used to generate the grids, perform the C'FD simulations,
train the neural networks and search for the optimal airfoil. The
current method required 24 minutes to reduce the mean square
error to 3.1E-5 whereas the method of Ref. 12 required 40 CPU hours
to achieve this value of error. Thus, in this case the new design
method decreased computational requirements by a factor of 100.

Design in the context of multiple operating points

As mentioned earlier, the current method has been formulated so

that it is easy to use whether one is trying minimize a scalar valued

function or a vector valued function (as in inverse design or multiple

point design). The final paper will include an example of a turbine

vane operating at different conditions. The current method will be

used to obtain a vane shape that is optimal in some sense for all the

operating conditions (minimal total pressure losses).

SUMMARY

An aerodynamic design procedure that uses neural networks to

model the functional behavior of the objective function in design

space has been developed. This method incorporates several

improvements to an earlier method that employed a strategy called

parameter-based partitioning of the design space in order to reduce

the computational costs associated with design optimization. As with

the earlier method, the current method uses a sequence of response

surfaces to traverse the design space in search of the optimal

solution. The new method yields significant reductions i n

computational costs by using composite response surfaces with

better generalization capabilities and by exploiting synergies

between the optimization method and the simulation codes used to

generate the training data. These reductions in design optimization

costs are demonstrated for a turbine airfoil design study where a

generic shape is evolved into an optimal airfoil. A hundred-fold

decrease in design cost was achieved with the current design
method.
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